Inteligencia artificial Los ‘deepfakes’ complican la lucha contra las noticias falsas

Los videomontajes hiperrealistas podrían conducirnos a un escenario donde tendría validez el eslogan que promocionó Dentro del laberinto: “El lugar en el que todo parece posible, pero nada es lo que parece”. Como muestra de ello, basta con echar un vistazo a esta farsa publicada en BuzzFeed el pasado abril y en la que Obama afirma que Trump es “un completo idiota”.

El alter ego del expresidente de Estados Unidos en esta recreación es el actor y cineasta Jordan Peele, director de la oscarizada Déjame salir y cuñado de Jonah Peretti, fundador de BuzzFeed. Ambos idearon este experimento para advertir de los potenciales peligros de aplicar la inteligencia artificial (IA) para fabricar noticias falsas en formato audiovisual, lo que se ha bautizado como deepfakes, es decir, mentiras profundas.

1537177382_367863_1537178857_noticia_normal_recorte1

Según Francisco Javier Ordóñez, director de Inteligencia Artificial en StyleSage, este vídeo es una prueba de concepto que ilustra sobre las posibilidades de una serie de algoritmos que se conocen como modelos generativos y que son capaces de memorizar cuáles son las características de una fuente de datos para después crear nuevos ejemplos de esos datos desde cero. “De esta forma, si la fuente de datos son imágenes de Obama, el algoritmo es capaz de generar las expresiones y gestos faciales necesarios para simular un discurso que no existe”, apunta Ordóñez.

Pero detrás de la manipulación hay un arduo y lento trabajo. No en vano, esos 70 segundos del vídeo de BuzzFeed necesitaron más de 56 horas de renderización, un procesamiento automático posterior a la edición que en este caso fue realizada con Adobe After Effects y FakeApp, el software de inteligencia artificial que generó polémica a principios de año porque sus técnicas de deep learning se usaron para sustituir las caras de actrices de películas porno por las de famosas de Hollywood en vídeos que después se compartían en Reddit.

Por muy bueno que sea el resultado, un deepfake puede ser detectado rápidamente por alguien familiarizado con los modelos generativos y las técnicas del style transferque replican los movimientos de un rostro en otro distinto. Por ejemplo, Jorge Muñoz, socio cofundador de Serendeepia, saca a relucir aspectos de las imágenes que no parecen naturales, como el movimiento del cuerpo y la entonación de la voz, aunque reconoce que ya existen montajes muy realistas, como los llamados deep video portraits, que superan esas limitaciones. “El mayor problema de estas técnicas es que requieren una gran cantidad de datos para poder entrenarlas, por lo que hoy en día únicamente veremos contenidos así sobre personas famosas de las que se pueden encontrar millones de horas de vídeo de alta calidad en Internet”, asegura.